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Abstract

Ž .The latent variable multivariate regression LVMR model is made up of two sets of variables, X and Y, both of which
contain a latent variable structure plus random error. The wide applicability of this model is illustrated in this paper with
several real examples. The chemometrics community has developed several empirical methods to estimate the latent struc-

Ž . Ž .ture in this model, including partial least squares regression PLS and principal components regression PCR . However, the
majority of the statistical work in this area relies on the standard or reduced rank regression models, thus ignoring the latent
variable nature of the X data. Considering methods like PLS and PCR in the context of these models has led to some mis-
leading conclusions. This paper reaffirms the claim made frequently in the chemometrics literature that the reason PLS and
PCR have been successful is that they take into account the latent variable structure in the data. It is also shown through
several examples that the LVMR model provides the means to model more effectively many datasets in applied science re-
sulting in improved techniques for process monitoring, experimental design and prediction. The focus in this paper is on the
general model rather than on parameter estimation methods. q 1999 Elsevier Science B.V. All rights reserved.

Keywords: Partial least squares; Principal components regression; Multivariate regression; Reduced rank regression; Errors-in-variables;
Factor analysis

1. Introduction

In this paper, we discuss a general model, the la-
Ž .tent variable multivariate regression LVMR model.

Three distinct features distinguish this model from
related models discussed in the literature. The first of
these is the latent variable nature of the data—that all
observed variables in the model include both a latent
structure and a random error. The second is the re-
gression nature of the model which in this case means
only that the data are divided into two sets of vari-
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ables X and Y based on their availability at the time
the model is to be used. This may be because the goal
of the application is prediction of Y for future obser-
vations of X or because the Y data are only available
infrequently relative to the X data and are used only
to provide better estimates of the model parameters.
The third key feature is the multivariate nature which
specifies that both X and Y are made-up of multiple
variables. We show that this model is substantially
different from the standard multivariate regression

w xmodel 1,2 , the reduced rank multivariate regression
w xmodel 3–5 , and the errors-in-variables multivariate

Ž . w xregression EIVR model 6,7 . These latter models
do not include the latent variable structure in X.

0169-7439r99r$ - see front matter q 1999 Elsevier Science B.V. All rights reserved.
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There are several models already covered in the
literature which are special cases of the LVMR un-
der certain assumptions about the variables and pa-
rameters in the model. One example is factor analy-

w xsis 2,8 . In this paper, the assumptions on the quanti-
ties in the model are not discussed. The emphasis here
is more on the general form of the LVMR.

In chemometrics, data following the LVMR are
often analyzed using parameter estimation methods

Ž . w xsuch as partial least squares regression PLS 9 and
Ž . w xprincipal components regression PCR 10 . The

popularity of these methods has led researchers to ask
under which circumstances these methods should be
used. In order to answer this question, a reasonable
model for the data will be required. PLS and PCR
have often been compared with other multivariate re-
gression methods relative to data following the stan-
dard regression model or the reduced rank regression
model, rather than a LVMR model. For instance, see

w x w xFrank and Friedman 11 , Breiman and Friedman 12
w xand Schmidli 13 . This paper suggests that the data

for which PLS and PCR are being used are more of-
ten of a LVMR form. This point has been made in

w x w xthe literature, see Burnham et al. 14 and Wold 15 .
This paper deals only with the issue of which model
is appropriate for the data. The subsequent issue of
which parameter estimation technique should be cho-
sen is not dealt with in this paper.

It is also important to realize that the only crite-
rion used to compare parameter estimation methods

w xin Refs. 11–13 was their quantitative performance
for prediction of Y. This is often of interest in
chemometrics problems but ignores other aspects of
the use of the model. These include the analysis and
interpretation of events in the data, process monitor-
ing, and providing a basis for designed experiments
in high dimensional systems. It also ignores the abil-
ity of the model to handle missing data, and to de-
scribe the region in which the model is valid.

This paper brings together some of the concepts
w x w xpresented by Wold 15 and Kresta et al. 16 among

many others in the chemometrics literature. The
unique contribution of this work is threefold. First, it
provides a much more clearly defined class of mod-
els for the data than previously given in the litera-
ture. Secondly, it demonstrates the existence of latent
variable structure in several real datasets by illustrat-
ing characteristics implied by the LVMR. The final

and most significant contribution is to describe the
different applications in which considering a LVMR
model brings substantial benefit. These applications
include process monitoring, prediction, and experi-
mental design.

The LVMR model, standard multivariate regres-
sion model, reduced rank multivariate regression
model, and EIVR model are discussed in Section 2.
A description of how the LVMR model arises in data
in both chemistry and chemical engineering is given
in Section 3. This is illustrated with three real data
examples taken from diverse applications that clearly
show a LVMR form. Section 4 deals with the impor-
tance of model selection and shows many applica-
tions where using the LVMR model for the data
brings substantial benefit. Section 5 provides a sum-
mary of the paper.

2. Latent variable models

2.1. The general latent Õariable model

ŽConsider a dataset where k variables, xs x , x ,1 2
.. . . , x , are measured. The concept behind a latentk

variable model for the data is that the process under
observation is actually driven by a set of aFk latent

Ž .variables zs z , z , . . . , z . These variables are1 2 a

not observable but their influence can be seen in the
measured variables, x. Their relationship is modeled
by:

xszPqe , 1Ž .
where z is 1=a, P is a=k, and e is 1=k. The last
term in the model, e , is considered to be random er-
ror. This would be made up of uncontrollable sources
of variability such as measurement error, sampling
error, and unknown process disturbances. Since z is
unobservable and P is unknown, z is not identifiable

Ž .in Eq. 1 . In fact, the same values for x would arise
if z and P are, respectively, replaced with zU szC
and PU sCy1 P, where C is any non-singular a=a
matrix. Thus, the model is more commonly given as:

xs tPqe , 2Ž .
where t is understood to be some transform zC of the
actual latent variables z. The transformation of z to
t is simply a change of basis so that the points in t
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would lie in the same vector space as those in z but
expressed in a different basis. In general, the actual
latent variables are not as important as the overall
space they generate. Therefore, any basis, t, will be
sufficient to define this space. For a given set of n

Ž .observations following Eq. 2 , the model can be
written:

XsTPqE, 3Ž .
where X is n=k, T is n=a and E is n=k.

2.2. The LVMR model

Ž .The LVMR model is an extension of model 3
Ž .obtained by considering two spaces X n=k and Y

Ž .n=m with a common underlying latent structure as
follows:

XsTPqE, 4Ž .
YsTQqF. 5Ž .
Again, the rows of E and F are assumed to be ran-
dom error.

The latent variable space generated by the columns
of T can be of much smaller dimension than either X

Ž . Ž .or Y. The relationship displayed in Eqs. 4 and 5
could just as easily be formulated using the single

Ž .space model 3 adapted for the combined matrix,
w xXY .

w x w x w xXY sT PQ q EF . 6Ž .
In the LVMR model, there is no intrinsic differ-

ence between the X and Y spaces. Certainly, there is
no assumption of a causality direction. The division
of the data arises from the intended use of the model
rather than in the features of the data modeled.
Specifically, the Y data are available only for the
building of the model. When the model is to be used,
it is assumed that only the X data will be available.
In a typical regression problem, this is because the
model will be used to predict Y for future observa-
tions of X. In the case of many chemometrics appli-
cations, the goal of the model may not be to predict
Y at all. The Y data may not be available because the
data are collected at a later time or less frequently,
Že.g., data taken on-line from the process are the X
data whereas data collected on the final product off-

.line in a quality control lab are the Y data or be-
cause it is costly or time consuming to measure the

Y data on an ongoing basis. In such cases, the Y data
are available for the model building only and are used
because it is expected that they will help obtain bet-
ter estimates of the latent space, T.

Ž . Ž .The model in Eqs. 4 and 5 can accommodate
the case where some latent directions are not com-
mon to both spaces. The space spanned by the vec-
tors in T is actually that spanned by the union of the
two single space latent vector bases. The model is
most useful when the overlap between the two spaces
is large. Otherwise, it may be more appropriate to
simply model the X data.

The LVMR model can be further specified by as-
sumptions about the variables and parameters in the
model. For example, the error covariance matrices for
the errors in E and F can be given certain structures
ranging from them being completely unknown, to di-
agonal with unknown diagonal elements, to com-
pletely specified. No particular assumptions are dis-
cussed in this paper since the focus is on the general
model.

2.3. The standard, reduced rank, and EIVR models

The standard multivariate regression model is
given as follows:

YsXBqF, 7Ž .
where Y and X have the same dimensions as in mod-

Ž . Ž . Ž .els Eqs. 4 and 5 , B k=m is a matrix of regres-
sion coefficients to be estimated, and F is the n=m
matrix of random errors.

This model is very different from the LVMR
model. In this model, there is no measurement error
or any other form of errors in X. Usually, the X are
assumed to be fixed, known constants. It does not in-
clude any latent structure in either X or Y.

The reduced rank regression model is the model
Ž .7 with the additional constraint that B has rank a

w x-m 3–5 . This constraint would result in a latent
structure in Y. There are still no errors or latent
structure in X.

w xThe EIVR model 6 is given as follows:

Y sX B, 8Ž .t t

YsY qF, 9Ž .t

XsX qE. 10Ž .t
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Here, X and Y are again the observed data, and E and
Ž . Ž .F are defined as in Eqs. 4 and 5 . Y and X havet t

the same dimensions as Y and X, respectively, and
are the unobserved true values. This model adds
measurement error in X to the standard multivariate
regression model but does not add any latent struc-
ture in X or Y.

2.4. Data analysis to illustrate a LVMR structure in
data

This section describes some statistics that will be
used to examine the LVMR structure in the three real
data examples in Section 3. In particular, they are
used to illustrate the reduced rank nature of the data
and the overlap between the two latent spaces char-
acteristic of the LVMR.

Ž .Under the latent variable model 3 , the sample
variance of any given vector in the column space of
X would roughly be the sum of its sample variance

Žin the column space of T due to the dispersion of the
.latent variables and to the random error and its sam-

Žple variance in the space orthogonal to T due only
.to the random error . Consider the case where the

overall variance in E is small. In that case, the a di-
mensions in the column space of T will have higher
sample variance. The sample principal component
directions in X are orthogonal directions with sample
variance ranging from the maximum to the minimum
w x10 . Therefore, if you were to do a principal compo-

w xnents analysis 10 on X, you would expect to see a
sample principal components with high sample vari-
ance, and also expect that those directions would lie
in the column space of T. The remaining k–a direc-
tions would have smaller variances as they would
have contributions only from the errors, E. Obvi-
ously, the ratio of the overall sample variance in E to
the overall sample variance in T would control how
great the separation is between the first a eigenval-
ues of XT X and the last k–a eigenvalues. This can
be thought of as a multivariate signal to noise ratio
for latent variable data. This analysis will only show
data that are likely to have a latent variable structure;
it will not necessarily rule out latent structure if this
pattern is not found. If the error variance is large rel-
ative to the dispersion in the latent directions then the
latent directions will not stand out in the analysis.

To illustrate the latent variable nature of a given
dataset, we perform the following simple analyses.

w xFirst, we see if the combined matrix XY has a
sample principal components with a relatively higher
variance than the remaining mqkya sample prin-
cipal components. This suggests that the data follow

Ž .a LVMR model as given in Eq. 6 . A similar analy-
sis can be done on X and Y separately, keeping in
mind that either or both spaces may exhibit fewer la-

Žtent dimensions than a since T is described as the
.union of the two latent spaces . There are now three

w xestimated ranks, that of XY , a, that of X, r , andx

that of Y, r . From set theory, it is now possible toy

estimate the dimension of the overlap as r qr ya.x y

If this number is zero then the latent spaces in X and
Y do not appear to overlap at all. This would suggest
that while the LVMR model did technically hold, it
would not be useful to model the X and Y data to-
gether. If this number is greater than zero then it
shows that the latent spaces in X and Y do overlap
and the LVMR model would be useful.

A more descriptive analysis involves the use of the
2 Ž w xR statistic from standard regression theory Ref. 1 ,

.p. 14 . Thus, it uses the criterion of percentage vari-
ance explained when one estimated space is used as
a predictor space for another estimated space. The
idea is that R2 should be high between the two esti-
mated latent spaces and low between the estimated
latent space for one set of variables and the esti-
mated residual space for the other set of variables.
This is done as follows.

Consider the space spanned by the first i princi-
pal components in X as a prospective latent variable
space of rank i, that is the column space of XC i

where C is the matrix containing the first i princi-i
w xpal component weight vectors c , c , . . . , c , de-1 2 i

note this by X . The subspace of X orthogonal to thisi
˜ ˜space is given by XC where C is the matrix con-i i

taining the last k y i principal component weight
˜vectors, denote this by X . Consider this space to bei

an estimate of the residual space. The corresponding
spaces in Y with dimensions j and my j can be de-

˜noted by Y and Y . In Section 2.2, it is mentionedj j

that the LVMR model is most useful when the latent
spaces in X and Y have substantial overlap. This
would result in high R2 values when either latent
space is used to predict the other using a standard re-
gression analysis. It should also result in low R2 val-
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ues when the residual spaces are used to predict the
˜latent spaces. The four estimated spaces, X , X , Y ,i i i

˜ 2and Y , are used to calculate the following four Ri

statistics:

y1 2T T5 5Y yX X X X YŽ .j i i i i j2R ij s ,Ž .x y 25 5Yj

y1 2T T5 5X yY Y Y Y XŽ .i j j j j i2R ij s ,Ž .y x 25 5X i

y1 2T T˜ ˜ ˜ ˜5 5Y yX X X X Yž /j i i i i j2R̃ ij s ,Ž .x y 25 5Yj

y1 2T T˜ ˜ ˜ ˜5 5X yY Y Y Y Xž /i j j j j i2R̃ ij s ,Ž .y x 25 5X i

5 5 2where is the sum of squares of each of the ele-
ments in the matrix. Data following the model given

Ž . Ž .in Eqs. 4 and 5 with a reasonable degree of over-
lap between the two latent spaces, should have high
values of the first two R2 statistics and low values for
the last two R2 statistics for suitable values of i and
j.

3. Latent variable data in chemometrics

3.1. Latent Õariable data in chemistry

w xWold 15 gives two important examples of appli-
cation areas for latent variable models in chemistry.
These are multivariate calibration and quantitative

Ž .structure–activity relationships QSAR modeling.
w xFollowing Ref. 15 , the latent variable nature of these

two applications is discussed below.

3.1.1. MultiÕariate calibration
Multivariate calibration uses multivariate spectral

Ž .data in X the emissions at various wavelengths to
infer concentrations of several analytes, Y, in chemi-
cal samples. The procedure is usually to prepare

Žcarefully measured solutions containing known apart
.from measurement error amounts of the analytes in

Y. These solutions are then scanned by the spectrom-
eter to obtain a set of values for the X variables. The

resulting data are used to build a model for X and Y.
This model is then used on samples in which the
amounts of the analytes are unknown, to estimate the
values of the Y variables from given spectral data in
X.

This is a classic case of latent variable data in X.
Each sample will contain only a few dominant chem-
ical constituents. Beer’s law states that the resulting
spectrum of the mixture should be a linear combina-
tion of the pure component chemical spectra. These
pure component spectra will be the latent variables z.
Deviations from Beer’s law can occur due to inter-
ference from unmeasured chemicals, measurement
error and deviations from linearity. These will be
found in the matrix of errors E. More information on
the multivariate calibration problem is given in Refs.
w x17,18 .

3.1.1.1. Example. These data are taken from Lind-
w xberg et al. 19 . The main compound of interest is

ligninsulfonate, a compound released into water from
sulfite pulp mills which contributes to the general
pollution of seawaters and may be fatal to fish. This
compound can be detected using fluorescence spec-
trometry. However, interferences may arise from hu-
mic acid and detergents containing optical whiteners.
The emission spectra of these three compounds are
severely overlapped. The goal of the study is to find
out whether quantitative determinations can be made
in mixtures of these compounds using fluorescence
spectrometry. The Y data are the measured amount of
each of the three chemicals in the sample. This is
controlled by the experimenter who is making up the
solutions. The X data are the value of the emission
spectra for 27 equidistant wavelengths between 320
and 540 nm for each of the 16 samples. The data ex-
amined here are the training data for calibration set
II from the paper. The samples were prepared such
that the concentrations of these species reflected the
ranges normally found in Swedish seawaters.

The percentage of variance explained by each
principal component for both X and Y is given in
Table 1. The first two principal components of X ex-
plain 99% of the variability in the 27 variable X
space. In this example, there are three chemical con-
stituents in Y. However, as stated in the problem, they
are highly overlapping. Thus, the first principal com-
ponent, explaining 97% of the variability of X, is
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Table 1
Percentage of variance explained by the principal components of
X, Y and XY for the multivariate calibration example

PC X Y XY

Percent Total Percent Total Percent Total

1 97 97 45 45 92 92
2 2 99 33 78 5 97
3 0 99 22 100 3 100
4 0 99 0 100

most likely an average of the three spectra. The sec-
ond, explaining only 2%, most likely reflects the main
areas in which the spectra differ. They are so severely
overlapped that only two significant directions are
seen. The principal components for the Y matrix ex-
plain 45, 33 and 22%, respectively. This suggests that
Y has full rank 3.

The first three principal components of the com-
bined XY space account for 100% of the variability

Ž .in the data to integer round-off . Again, the first
component makes up the majority of this with 92%.
A three dimensional latent space represents a large
reduction in dimensionality from the original 30 di-
mensional measurement space.

In this case, there is no residual space for Y as the
˜2 Ž .latent directions span the whole space, thus R ijy x

s0. The other three R2 statistics for is2 and js3
Ž .X two dimensional and Y three dimensional , are

2 2 ˜2Ž . Ž . Ž .R ij s0.66, R ij s0.99, and R ij s0.34.x y y x x y

These show relatively strong relationships between
the latent spaces in X and Y and only a weak rela-
tionship between the residual space in X and the la-
tent space in Y. This analysis indicates that the
LVMR model describes these data well.

3.1.2. QSAR
The second application area is QSAR modeling.

w xThis area is reviewed in Dunn and Wold 20 . In this
type of study, chemical compounds of similar struc-
ture are investigated relative to their biological activ-
ity. The objective is to find relationships between the
chemical structure characterized by the variables in
the X matrix and their biological activity values rep-
resented by the variables in the Y matrix. The X ma-
trix would be made up of variables such as melting
point and density, the Y matrix by variables such as
percentage of subjects developing side effect A. The

end goal is to construct compounds with improved
Ž .activity e.g., lower incidence of side effect A by se-

lecting a chemical with an appropriate structure. In
this case, usually both the X and the Y matrices dis-
play a latent variable nature. Both the structure vari-
ables and the activity variables are really indicators of
more fundamental chemical properties that cannot be
intrinsically measured. These fundamental properties
would be the z latent variables.

3.1.2.1. Example. These data are taken from Eriks-
w xson et al. 21 . The goal of the study is to model and

predict the aquatic toxic profiles of a set of chemical
compounds based on information on their chemical
properties. There are eight predictor variables related
to the structure of the chemical compounds taken
from standard reference compilations, previous re-
search papers, and some calculations. These include
melting point and density. There are eight response
variables primarily related to toxicity to four aquatic

Žspecies e.g., the logarithm of the concentration caus-
.ing immobilization of 50% of D. magna after 48 h .

Ž .Fifteen chemicals mono-nitrobenzene derivatives
were included in the study.

Table 2 gives the percentage of variance ex-
plained by the eight principal components for both X
and Y. Both show a strong latent variable nature with
the first two principal components explaining 84% in
X and 90% in Y. The combined space also shows an
approximate rank of two. This suggests that the two
latent subspaces overlap completely. Thus, the origi-

w xnal 16 variable space, XY , has been reduced to an
underlying two dimensional latent space. This model

Table 2
Percentage of variance explained by the principal components of
X, Y and XY for the QSAR example

PC X Y XY

Percent Total Percent Total Percent Total

1 58 58 74 74 62 62
2 26 84 16 90 22 83
3 7 92 4 94 5 88
4 3 95 2 96 4 92
5 2 98 2 98 3 95
6 1 99 1 99 2 96
7 1 100 1 100 1 97
8 0 100 0 100 1 98
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is corroborated by the values of the R2 statistics for
2 Ž . 2 Ž .i s 2 and j s 2: R ij s 0.83, R ij s 0.80,x y y x

˜2 ˜2Ž . Ž .R ij s0.08, and R ij s0.10. The overall datax y y x

analysis once again suggests that a LVMR model de-
scribes the data well.

Under the LVMR model, it is expected that the
two latent variables in X would group the data in a

Žsimilar way as the two latent variables in Y apart
.from rotation and scaling . This follows from the fact

that the two spaces overlap completely and thus
should provide the same information. In Fig. 1, the
first two latent variables for both X and Y have been
estimated using principal components analysis. The
scores for these latent variables have been plotted in
each graph. One can see three groups of data in these
plots that basically stay together in both plots. These

Ž . Ž .are points 1,2,9,10,11,14,15 , points 3,4,5,12,13
Ž .and points 6,7,8 . Thus, it seems that the latent vari-

ables in the individual spaces are sorting the data in
similar ways in their two dimensional latent spaces.

3.2. Latent Õariable data in chemical engineering

Most processes are highly automated and on-line
process computers routinely collect data on hundreds
of process variables. These process variables make up
the X data. However, the true dimension of the space
in which the process moves is always much lower
than the number of variables measured. There are
usually only a few underlying sources of variation in
the process such as feed composition, raw material
properties and catalyst activity. These represent the
underlying latent variables z. The hundreds of on-line
process measurements are just different measures of
the effects of changes in these latent variables on the

ˆ ˆFig. 1. Plot of t vs. t for both X and Y for the QSAR data.1 2

process. Adding more process measurements will not
increase the true dimension of the process.

w xThe following simple examples 16 serve to illus-
trate the low dimensional latent variable structure of
processes. Consider the reaction of two chemical
species, A and B to form a third species, C, via the
reaction AqB™C, and where A and B are always
fed to the reactor in a given ratio. Although one may

Žmeasure the quantities of all three species leading to
.a three dimensional measurement space , the true di-

Žmension of the process is univariate in nature the
stoichiometric relationship and fixed feed ratio each

.eliminate one degree of freedom . In other situations,
the placement of measuring sensors and the nature of
the process lead to reduced dimensional systems.
Consider a distillation column where only three vari-
ables change independently, the reflux of material
back into the top of the column, the steam duty of the
reboiler and the feed composition. The effects of
these fundamental variables on the system as mea-
sured by the variables in x would make up the latent
variables, z. If the temperature profile of the column
is measured at 20 tray locations, the shape of the
profile cannot vary independently in 20 dimensions.
The profile will most likely exhibit only three de-
grees of freedom, and adding temperature sensors to
another 20 trays will not change this.

On many processes, the end-product is sampled
and various measurements made off-line in a quality
control lab. These measurements are usually much
less frequently taken than the on-line measurements
and are also often costly and time consuming to do.
Because of their limited availability, these measure-
ments are used to make up the Y space of the data.
As noted in Section 2, this is often the only differ-
ence between X and Y—their availability at the time
the model is to be implemented. As an illustration of
latent variable structure in this Y space, consider the
manufacturing process for synthetic fibres. The prod-
uct quality is often characterized by taking measure-
ments on up to a dozen or more properties of the fi-
bres. These include such features as denier
Ž .weightrunit length , breaking strength, and elonga-
tions at several different loads. These are often a set
of arbitrary but convenient measures that attempt to
characterize the underlying product quality. How-
ever, the physical relationship of these measures to
one another guarantees that the process is only capa-
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ble of making fibres with certain combinations of
these properties, and that disturbances in the process
will affect all these properties in a highly correlated
manner. For example, fibres with a very small denier
cannot be made to have a high breaking strength and
latent variables which would lead to a reduction in
denier would also lead to a reduction in breaking
strength. Typically, principal components analyses on
the Y data from such processes show that the major-
ity of the variance in each process is accounted for
by the first three or four principal components.

3.2.1. Example
These data are from a mineral sorting plant of

w xLKAB in Malmberget, Sweden. See Tano et al. 22
for a discussion of the process involved and a subse-
quent experiment on the same process, and the man-

w xual for the SIMCA-P software 23 for a discussion
of this particular experiment. In this process, raw iron
ore is divided into two products by a sequence of
separation and grinding steps with several parallel
lines and feedback systems. The goal of the process
is to get as high an iron concentration as possible in
the two resulting products—the pellet concentrate

Ž .feed PAR , which is sent to a flotation process, and
Ž .fines concentrate feed FAR , material that can be

sold as is. Twelve process factors were identified to
make up the X variables. Three of these were set with
a designed experiment: total load, and the velocities
of separators 1 and 2. The other nine variables were
measured on the process for each run. There were six
response variables, Y, relating to the products of the
process: amounts of each of the concentrates 1 and 2,
the relative distribution of types 1 and 2, iron content
in the FAR, phosphorus content in FAR, and iron
content in the raw ore. The goal of this study was to
build a model to provide insight into the underlying
nature of this process and also to build a predictive
model for the iron content of the crude ore which is
given in this study from chemical assays and mate-
rial balances in the sorting plant. There are 231 ob-
servations available for the SIMCA tutorial.

Table 3 displays the percentage of variance ex-
plained by the principal components in X and Y. X
appears to have an underlying rank of three with 90%
of the variance explained. This makes sense as three
variables were varied in the experiment, all of which
appear in the X variables. The Y space seems to have

Table 3
Percentage of variance explained by the principal components of
X, Y and XY for the mineral processing example

PC X Y XY

Percent Total Percent Total Percent Total

1 60 60 41 41 50 50
2 18 78 30 71 21 71
3 12 90 22 93 14 85
4 5 95 6 99 5 90
5 2 97 1 100 3 93
6 1 98 0 100 2 96

a rank of three with 93% of the variability explained
by these three components. The combined space also
shows a rank of three which suggests that these
spaces overlap completely. The R2 statistics for these

2 Ž . 2 Ž .dimensions are R ij s 0.67, R ij s 0.78,x y y x
˜2 2Ž . Ž .R ij s0.11, and R ij s0.07. Once again wex y y x

have seen a substantial rank reduction from the origi-
nal 18 variable space to a three dimensional space.
This analysis shows a clear indication of data follow-
ing a LVMR model.

The above process example is a simple illustration
of how latent variable structures appear in process
data. With operating data from continuous processes
where one might have several hundred process vari-
ables, one rarely finds more than seven or eight la-

Ž w x.tent variables for example, see Kourti et al. 24 . In
analyzing trajectory data from industrial batch pro-

w xcesses, Nomikos and MacGregor 25 found that data
matrices X of dimension 55=1000 could be sum-
marized by three latent variables. Such large com-
pression factors result from the high correlations
among the variables and among their time trajecto-
ries, arising from the fact that there are only a small

Žnumber of fundamental underlying factors latent
.variables such as impurity levels and raw material

variations which affect the process.

4. Importance of model selection

The latent variable model for the X space intrinsic
to the LVMR is important for many of the statistical
analyses of multivariate data. In this section, this is
demonstrated with references to real examples and
case studies where available.
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4.1. Prediction

There are two issues in predictive modeling in
which having a good model for the latent variable
structure in the X space proves very useful. These are
the issue of missing data and that of defining a re-
gion in which the predictive model is valid.

The LVMR model itself does not provide as obvi-
ous a method of prediction for Y as the standard or
reduced rank regression models as it does not pro-
vide a simple linear relationship between X and Y.
What is usually done in practice is to obtain esti-
mates of P and Q from the training data and to esti-
mate T from the new data. PLS and PCR, among

ˆ ˆothers, provide a linear function T s X W,new new

where an estimate of W is obtained from the training
data.

4.1.1. Missing data
When measurements on individual variables is

missing for some observations in X there are several
alternatives. If these data are in the training set then
the data with missing observations could be deleted.
This would result in a loss of information but may not
be significant if the dataset has many observations.
This option is not available when the model is used
for prediction from a new vector of observations,
x , containing missing variables. A very crude al-new

ternative to deleting the observations would be to re-
place the missing variables with their average values.
This would, however, completely ignore all the in-
formation we have in the remaining data on the miss-
ing values. A straightforward illustration of this is as
follows: suppose x and x are highly positively1 2

correlated. Further suppose that x is missing for a1

given observation. Then, it is obvious that the aver-
age value for x will be a poor estimate if it is known1

that x has a very high value.2

Because it considers the structure of the X data, the
LVMR model provides a very simple and effective
way to handle missing data. The new X observations
with missing data can be projected onto the reduced

ˆ ˆrank space estimated from the training data TP. In
this way, missing values are replaced by their pre-
dicted values under the LVMR model. This takes into
account the correlation structure of the X space in the
replacement of missing values. A review of missing
data methods using latent variable models is given in

w x w xNelson et al. 26 . Kresta et al. 27 gives an illustra-
tion of the improvement in prediction obtained by
using the LVMR model estimates to replace missing
data over replacing them with average values. In this
example, the model parameters are estimated using
PLS. The results are reproduced in Fig. 2. In this ex-
ample, the data relating to an important temperature
sensor has been removed from the test dataset for ev-
ery observation. The filled squares correspond to re-
placing the missing sensor with an average value. The
crosses correspond to replacing the missing sensor
with estimated values using the LVMR model. It is
easy to see in this example how the ability of the
LVMR model to handle missing data has greatly en-
hanced the predictive ability of the model.

4.1.2. Valid prediction regions
A common problem in all prediction modeling is

to define the region within which the predictive model
is valid. This is very important when the model is to
be used for predictions with new data X . Stan-new

dard statistics texts refer to this problem but do not
Ž w x w xoffer detailed solutions Ref. 1 , p. 241; Ref. 28 , p.

.83 . However, if a LVMR model is appropriate for
the data, then these new datapoints should lie in the
a-k dimensional latent space for X apart from the
error E . The LVMR model thus provides a natu-new

ral way of checking for the validity of new X data
prior to using it for prediction.

Consider a process that has been shown to move
in roughly two dimensions characterized by esti-

Fig. 2. Plot of predicted vs. observed values for data with impor-
Ž w xtant temperature sensor data removed reprinted from Ref. 27 ,
.with permission from Elsevier Science .
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mated latent variables t and t . As mentioned pre-1 2

viously, the new data can be used to provide esti-
mates of t and t for this new point. The first thing1 2

to check is the distance from our new point to the la-
tent variable space. The distance to the model in the
X space is called the squared prediction error for the

Ž .new observation, x, SPE and is defined by:x

k
2

SPE s x yx . 11Ž .ˆŽ .Ýx j j
js1

If this distance is large relative to the distances seen
in the training data then there is some evidence that
the new data, x, do not fit the model obtained for the
training data. In this case, it would certainly be un-
wise to use the model to predict. If the SPE is withinx

the range seen in the training set then one must still
check that the new data fall in the same region of the
latent variable space as defined by the training set.
Fig. 3 shows two new points at which prediction is
desired. The projections into the plane defined by t1

and t is given by the m. Notice that point 1 pro-2

jects into the range of data used to build the model
whereas point 2 does not. This suggests that point 2
requires extrapolation into a new region, and would
suggest caution in using the model to predict at this
point.

ˆ ˆFig. 3. Plot of t vs. t defining a normal operating region for the1 2

training data with two new points for prediction.

ˆ ˆFig. 4. Plot of t vs. t for the continuous recovery process histor-1 2
Ž w xical data reprinted from Ref. 24 , with permission from Elsevier

.Science .

4.2. Analysis of historical operating data and pro-
cess monitoring

In many chemical processes, there are a large
number of variables such as temperatures, pressures,
and flows measured on-line on the process. These
variables contain essential information on process
conditions and it is desirable to model them in such
as way that the maximum information can be ex-

w xtracted from them. Kourti et al. 24 give the follow-
ing example of a continuous recovery process that had
experienced some unexplained occurrences of low
purity and recovery of product. In this example, there

Ž .are 442 process variables X and five product vari-
Ž .ables Y . It was determined that seven latent dimen-

sions were significant. When the process data were
plotted in the first two of these latent variables as
shown in Fig. 4, all cases of poor product quality
Ž .shown in the solid circles fell outside of the normal
operating region for the data. Further analysis was

w xdone using the contribution plot 29 for one such
outlying point. This plot is reproduced in Fig. 5. Each
vertical line on the graph represents a measure of the
contribution of that X variable to the movement of the
latent variable scores between normal operation and
observation 480. Notice that a few variables of the
442 had much larger contributions than the rest. Us-
ing these variables as a starting point for investigat-
ing the cause of the process upset, a solution to cor-
rect the problem was quickly found. This was imple-
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Fig. 5. Contribution plot for observation 480, continuous recovery
Ž w xprocess example reprinted from Ref. 24 , with permission from
.Elsevier Science .

mented on the process to bring the product properties
back into the desired region. In this application, the
LVMR model allows a complicated process to be an-
alyzed using only a few key estimated latent vari-
ables. The reduction in dimensionality of the prob-
lem allows one to easily detect a problem by track-
ing the behavior of the process in the latent variable
space.

It is also often of interest to monitor the process
variables to check that the product is being manufac-
tured consistently. If a univariate statistical process

Ž .control SPC scheme was implemented, it would re-
sult in charts on many variables. Not only is this im-
practical but since these variables are usually highly
correlated, the interpretation of the univariate charts

w xcould be misleading 30 . The correlation structure of
the data should be accounted for in any monitoring
scheme. If the X variables can be shown to move
primarily in an a-k dimensional space apart from
noise, it makes sense that any monitoring scheme
should only require aq1 charts. The first a charts
can be made up of any set of orthogonal basis vec-
tors, T , for the common latent space between X and
Y. The last, and perhaps most significant, chart is the
SPE chart. An outlying point on this chart would sig-
nal that the observation in question falls further from
the proposed model than would be expected from the
training data. This would indicate that a new type of
event or fault has occurred and should be investi-
gated. As mentioned before, the use of latent vari-

ables for process monitoring is discussed in more de-
w xtail in Refs. 16,25,29 .

4.3. Experimental design

The use of experimental designs formulated within
the latent variable space of X has been proposed
Ž w x w x.Wold et al. 31 , Kettaneh-Wold et al. 32 to re-
duce the number of design variables and yet ensure a
complete coverage of the X latent space.

w xThe application suggested by Ref. 31 has had
considerable success in drug development and QSAR

w xproblems 33–35 . In this application, a large but fi-
nite set of different chemical compounds is available
from which a subset must be selected to form a rea-
sonable design space. Usually, investigating all such
compounds would be infeasible both from time and
cost perspectives. One such example is given in Ref.
w x31 where the set of possible design points is a set
of penta-peptides with 20 possible ‘natural’ amino
acids for each of the five positions. This gives a pos-

5 Ž .sible set of 20 over 3 million penta-peptides to
choose from. What is needed is a way of describing
the 20 amino acids in a quantitative way so that a
meaningful reduction can be obtained from the 20
levels while still covering the design space. A de-
scription of the amino acids is given by a set of 29
physical and chemical measurements. A latent vari-
able analysis on data from 15 amino acids shows only
three main latent directions, t y t . Thus, there are1 3

now 15 factors to consider—three latent directions
for each of the five positions. Since these are quanti-
tative factors they can be taken at two levels: high and
low to get maximum separation. A 215y11 design is
obtained using the values of the variables t y t for1 3

each amino acid to determine which amino acid to use
for each position. This results in an experiment with
only 16 runs which covers the essential design space.

The application suggested by Kettaneh-Wold et al.
w x32 uses the X space latent variables to select group-
ings of process variables which should be varied to-
gether in any design. This is aimed at greatly reduc-
ing the number of independent design variables that
one needs to consider in a large multivariable pro-
cess, while still satisfying the operating constraints
and procedures of the process. The approach was il-
lustrated on an industrial mineral floatation circuit.
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4.4. Model inÕersion and optimization

A number of problems related to process and
product design and to process optimization that rely
on the use of LVMR models to model historical data
have recently been proposed. One such problem
Ž w x.Jaeckle and MacGregor 36 involves finding a
window of process operating conditions, x , withinnew

which one can produce a product having a specified
set of quality characteristics, y . Multivariate datanew

Ž .on the quality characteristics Y and operating con-
Ž .ditions X of some existing product grades are as-

sumed to be available. If a standard multivariate re-
gression model is assumed for the data, this is essen-
tially a model inversion problem from a lower di-
mensional Y space to a higher dimensional X space.
This leads to an infinite number of solutions, most of
them not feasible in the existing plant. However, us-
ing a LVMR model for the data allows one to find
those sets of process conditions which are capable of
yielding the desired product and yet still respect the
past operating procedures and constraints of the ex-
isting process. This is a direct result of having a
model for the process operating data X as well as for
the quality variables Y.

4.5. Statistical issues

It may be felt that, even if the data follow the
Ž . Ž .LVMR model 4 , 5 , it is still a reasonable approxi-

mation to use the standard multivariate regression
Ž .model, 7 , either with or without a rank constraint on

the parameter matrix, B. If prediction is the sole goal
of the modeling this may well be the case, particu-
larly if there are no missing data and the new condi-
tions are known to fall completely within the range
of the training data. However, there may be other

Ž .implications of using the model 7 rather than Eqs.
Ž . Ž .4 and 5 .

ŽAny property of the parameter estimates such as
.bias, mean squared error, or robustness are depen-

dent on the model. An example of this is the com-
mon practice of referring to methods such as PCR and

Ž w xPLS as biased regression methods e.g., Ref. 37 , pp.
.243–271 . This label refers to these methods being

biased for the parameter B in the standard multivari-
Ž .ate regression model 7 . However, B is not even a

Ž . Ž .parameter in the LVMR model 4 , 5 and so any
reference to bias in its estimate is meaningless.

Often once a model has been fit to data, statistical
inference such as confidence intervals, prediction in-
tervals, and tests of hypotheses are required to an-
swer questions about the system. These are also de-
pendent on the model posed for the data. An exam-
ple of this is prediction intervals for methods such as
PLS. Approximate prediction intervals have been de-
rived for PLS based on the standard regression model

w x w xin Ref. 38 or the EIVR model in Ref. 39 . These
two models produce different intervals since the er-
rors in X add an extra term to the formula for the in-
tervals. No work has been done to date to derive pre-
diction intervals for PLS based on the LVMR model
but there is no reason to think that they would be the
same as those based on the EIVR model and they
certainly would differ from those based on the stan-
dard regression model.

5. Summary

This paper has shown that the LVMR model has
wide application. This model addresses some of the
more typical features of multivariate data. The main
feature is that, as the number of variables considered
increases, the likelihood of them all moving indepen-
dently decreases significantly. It could be stated that
all systems have some fundamental underlying rank
and that once more variables are measured than that
fundamental rank there must be some form of under-
lying dependency. The issues surrounding the LVMR
model are presented from the perspective of the prac-
tical applications from which these data arise. A
sample of case studies has been presented coming
from a wide range of applications in chemistry and
engineering. These demonstrate that the LVMR
model is a very natural description for many sys-
tems.

The fact that the LVMR model includes a latent
variable structure for the X space has been shown to
be important for many of the common applications in
chemistry and engineering. In process monitoring, it
provides a means to reduce the information in the
process into a few very informative estimated latent
variables. In experimental design, it allows the ex-
perimenter to cover a very large, seemingly diverse
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design space with a small number of factors that de-
scribe the main features of the experimental units. In
the problem usually referred to as model inversion
where new X values must be found which will pro-
duce a given Y vector, the LVMR provides a means
to accomplish this while still maintaining the rela-
tionships in the new X data that existed in the histor-
ical data. The LVMR model was also shown to be
important even for prediction of Y. It provides a
means for replacing missing data with reasonable es-
timates and also for defining the situations in which
the model can be expected to predict well. These
points are often missed when the sole criterion for
comparing the performance of parameter estimation
techniques is the quantification of prediction error in
simulated examples where there is no missing data
and the test set data are known to come from the same
region as the training set data.

In summary, while practitioners have been very
receptive to the estimation methods, e.g., PLS arising
from the understanding of the latent variable struc-
ture of their data, researchers working on statistical
inference in these situations have not readily ac-
cepted the latent variable models that describe such
data. This paper has shown that the LVMR often de-
scribes the data well, and that when it applies, can
provide the means to extract a great deal of informa-
tion from the data. Given this, it is time for re-
searchers to start using the LVMR model as the basis
for statistical inference in this area. There is a great
need for proper statistical methods for such things as
confidence intervals, prediction intervals, tests of hy-
pothesis for parameters in the models such as the rank
of the model, a, and comparisons of latent spaces be-
tween datasets. Many of these problems are made
more challenging by the multivariate reduced rank
nature of the LVMR model where a basis for a vec-
tor space rather than univariate parameters are esti-
mated. However, it seems likely that when such re-
sults are obtained they will also provide more infor-
mation on the system under study than methods based
on the standard, reduced rank or EIVR models.
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